
Indian Journal of Cryptography and Network Security (IJCNS) 

ISSN: 2582-9238 (Online), Volume-4 Issue-2, November 2024 

7 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number:100.1/ijcns.A142704010524 

DOI: 10.54105/ijcns.A1427.04021124 
Journal Website: www.ijcns.latticescipub.com 

 

A Comprehensive Methodology for Data 

Compression and Decompression Utilizing 

Huffman Coding, LZW Compression, and Run-

Length Encoding, Integrated with Data Encryption 

Standard (DES) and Advanced Encryption Standard 

(AES) for Enhanced Security 

Sangeen Khan 

Abstract: With advancements in communication technologies, 

transitioning from 5G to 6G systems has led to exponential data 

growth, requiring secure and efficient data transmission 

solutions. This study integrates data compression techniques—

Huffman Coding, Lempel-Ziv-Welch (LZW), and Run-Length 

Encoding (RLE)—with symmetric encryption algorithms, AES 

(Advanced Encryption Standard) and DES (Data Encryption 

Standard). The primary goal is to enhance computational 

performance while ensuring data security. Using a 32-byte 

dataset and implementing the algorithms in Go language via 

Visual Studio IDE, results demonstrate the significant reduction 

in encryption time when combining compression and encryption. 

Among the AES combinations, AES with Huffman Coding 

showed the highest efficiency, reducing encryption time by 

approximately 15% compared to standalone AES. Similarly, DES 

paired with LZW compression achieved a 20% improvement in 

computational time over standalone DES. The findings 

emphasize that selecting the optimal combination depends on 

data type and user requirements, facilitating secure and efficient 

communication in high-bandwidth, low-latency 6G systems. This 

research underscores the potential of cryptography, combined 

with compression, to enhance data transmission efficiency 

without compromising security. The integration approach 

highlights cryptographic strength in safeguarding big data, 

addressing challenges in modern technologies like the Internet of 

Everything (IoE). These results establish a foundation for future 

secure communication frameworks, promoting reliable and 

scalable cryptographic solutions tailored for 6G and beyond.. 

Keywords: 6G, AES, Go Language, Computational 

Performance, Big data. 

I. INTRODUCTION 

The number of devices (sensors) connected is increasing 

very rapidly daily, and it is now the time of the Internet of 

Everything (IoE) instead of IoT.  

 
 

Manuscript received on 20 February 2024 | Revised 

Manuscript received on 24 October 2024 | Manuscript 

Accepted on 15 November 2024 | Manuscript published on 30 

November 2024.  
* Correspondence Author(s) 

Sangeen Khan*, Department of Communication Engineering University 

of Science and Technology Beijing China. Email ID: 

Sangeenkhan2662@gmail.com, ORCID ID: 0000-0003-4193-9340 
 

© The Authors. Published by Lattice Science  Publication (LSP). This is 

an open access article under the CC-BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/) 
 

For such approaches, high throughput, less latency, and 

vast coverage are required. 6G is the optimal candidate for 

achieving all these characteristics to have effective 

communication. The increase in the number of connected 

devices means a huge volume of data over the internet, which 

will result in various security issues. It needs time to bring 

efficient and secure communication paradigms for the 

smooth and reliable working of Artificial Intelligence (AI)-

based smart systems. The practice of expressing certain 

material while using fewer data to do so is generally referred 

to as data compression. The method of encoding the 

provided information in fewer bits is known as data 

compression. In the present era of communication, it is 

playing a very important function [1]. The process of data 

compression can be seen in Figure 1. 

 

[Fig.1: Data Compression][1] 

Encryption involves transforming plain text (or any 

other type of data) into cipher text. It is extremely crucial 

for safe communication. Symmetric or Asymmetric 

encryption (separate keys for encryption and decryption) is 

both possible. The original data will only be accessible to 

the intended recipient [1]. The overall encryption process is 

shown in Figure 2. 

 

[Fig.2: Encryption][1] 

 

 

 

https://doi.org/10.54105/ijcns.A1427.04021124
http://www.ijcns.latticescipub.com/
mailto:Sangeenkhan2662@gmail.com
https://orcid.org/0000-0003-4193-9340
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijcns.A1427.04021124&domain=https://www.ijcns.latticescipub.com


A Comprehensive Methodology for Data Compression and Decompression Utilizing Huffman Coding, LZW 

Compression, and Run-Length Encoding, Integrated with Data Encryption Standard (DES) and Advanced 

Encryption Standard (AES) for Enhanced Security 

8 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number:100.1/ijcns.A142704010524 

DOI: 10.54105/ijcns.A1427.04021124 
Journal Website: www.ijcns.latticescipub.com 

 

A. Huffman Coding 

Huffman coding provides a more advanced and effective 

lossless compression method that converts symbols in a data 

source to binary codes, resulting in the most common letters 

generating the shortest binary codes and the least common 

having the largest [2]. The main steps involved in the process 

of Huffman coding are given in algorithm 1. 

 
Algorithm_1 Huffman_Coding 

package main 
 

import ( 

 "container/heap" 
 "fmt" 

 "io/ioutil" 

 "log" 
 "time" 

) 

 
type HuffmanTree interface { 

 Freq() int 

} 
 

type HuffmanLeaf struct { 

 freq  int 
 value rune 

} 

 
type HuffmanNode struct { 

 freq        int 

 left, right HuffmanTree 
} 

 

func (self HuffmanLeaf) Freq() int { 

 return self.freq 

} 

 
func (self HuffmanNode) Freq() int { 

 return self.freq 

} 
 

type treeHeap []HuffmanTree 
 

func (th treeHeap) Len() int { return len(th) } 

func (th treeHeap) Less(i, j int) bool { 
 return th[i].Freq() < th[j].Freq() 

} 

func (th *treeHeap) Push(ele interface{}) { 
 *th = append(*th, ele.(HuffmanTree)) 

} 

func (th *treeHeap) Pop() (popped interface{}) { 

 popped = (*th)[len(*th)-1] 

 *th = (*th)[:len(*th)-1] 

 return 
} 

func (th treeHeap) Swap(i, j int) { th[i], th[j] = th[j], th[i] } 

 
func buildTree(symFreqs map[rune]int) HuffmanTree { 

 var trees treeHeap 

 for c, f := range symFreqs { 
  trees = append(trees, HuffmanLeaf{f, c}) 

 } 

 heap.Init(&trees) 
 for trees.Len() > 1 { 

 

  a := heap.Pop(&trees).(HuffmanTree) 
  b := heap.Pop(&trees).(HuffmanTree) 

 

  heap.Push(&trees, HuffmanNode{a.Freq() 
+ b.Freq(), a, b}) 

 } 

 return heap.Pop(&trees).(HuffmanTree) 
} 

 

func printCodes(tree HuffmanTree, prefix []byte) { 
 

 switch i := tree.(type) { 

 case HuffmanLeaf: 

 
  fmt.Printf("%c\t%d\t%s\n", i.value, i.freq, 

string(prefix)) 

 case HuffmanNode: 
  prefix = append(prefix, '0') 

  printCodes(i.left, prefix) 

  prefix = prefix[:len(prefix)-1] 
  prefix = append(prefix, '1') 

  printCodes(i.right, prefix) 

  prefix = prefix[:len(prefix)-1] 
 } 

} 

 
func main() { 

 fmt.Printf("\n\nReading a file in Go lang\n") 

 fileName := "test.txt" 
 

 data, err := ioutil.ReadFile("test.txt") 

 if err != nil { 

  log.Panicf("failed reading data from file: 

%s", err) 

 } 
 fmt.Printf("\nFile Name: %s", fileName) 

 fmt.Printf("\nSize: %d bytes", len(data)) 

 fmt.Printf("\nData: %s", data) 
 var test string = string(data) 

 symFreqs := make(map[rune]int) 
 

 for _, c := range test { 

  symFreqs[c]++ 
 } 

 

 exampleTree := buildTree(symFreqs) 
 

 fmt.Println("SYMBOL\tWEIGHT\tHUFFMAN 

CODE") 

 start := time.Now() 

 printCodes(exampleTree, []byte{}) 

 elapsed := time.Since(start) 
 fmt.Println(elapsed) 

 

} 

B. LZW Compression 

Abraham Lempel, Jacob Ziv, and Terry Welch developed 

the global lossless data compression technique known as 

Lempel-Ziv-Welch (LZW). One of the Adaptive Dictionary 

approaches is LZW compression. The dictionary is 

constructed concurrently with the encoding of the data. 

Therefore, on-the-fly encoding is possible. It's not necessary 

to convey the dictionary. At the receiving end, a dictionary 

may be created on the spot. If the dictionary becomes 

overflowing, we must re-initialize the dictionary and slightly 

expand each of the code words [2]. The main procedure of 

LZW compression is given in algorithm 2. 

 
Algorithm_2 LZW_Compression 

package main 
 

import ( 

 "fmt" 
 "io/ioutil" 

 "log" 

 "strconv" 
 "strings" 

 "time" 

) 

 

func compressLZW(testStr string) []int { 
 code := 256 

 dictionary := make(map[string]int) 

 for i := 0; i < 256; i++ { 
 

 

 
 

 

https://doi.org/10.54105/ijcns.A1427.04021124
http://www.ijcns.latticescipub.com/


Indian Journal of Cryptography and Network Security (IJCNS) 

ISSN: 2582-9238 (Online), Volume-4 Issue-2, November 2024 

9 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number:100.1/ijcns.A142704010524 

DOI: 10.54105/ijcns.A1427.04021124 
Journal Website: www.ijcns.latticescipub.com 

 

  dictionary[string(i)] = i 
 } 

 

 currChar := "" 
 result := make([]int, 0) 

 for _, c := range []byte(testStr) { 

   
phrase := currChar + string(c) 

  if _, isTrue := dictionary[phrase]; isTrue { 

   currChar = phrase 
  } else { 

   result = append(result, 

dictionary[currChar]) 
   dictionary[phrase] = code 

   code++ 

   currChar = string(c) 
  } 

  

 if currChar != "" { 

  result = append(result, dictionary[currChar]) 

 } 

 return result 
} 

 

func decompressLZW(compressed []int) string { 
 code := 256 

 dictionary := make(map[int]string) 
 for i := 0; i < 256; i++ { 

  dictionary[i] = string(i) 

 } 
 

 currChar := string(compressed[0]) 

 result := currChar 
 for _, element := range compressed[1:] { 

  var word string 

  if x, ok := dictionary[element]; ok { 

   word = x 

  } else if element == code { 

   word = currChar + currChar[:1] 
  } else { 

   panic(fmt.Sprintf("Bad compressed 

element: %d", element)) 
  } 

 

  result += word 
 

  dictionary[code] = currChar + word[:1] 

  code++ 
 

  currChar = word 

 } 
 return result 

} 

 
func main() { 

 

 fmt.Printf("\n\nReading a file in Go lang\n") 
 fileName := "test.txt" 

 

 data, err := ioutil.ReadFile("test.txt") 
 if err != nil { 

  log.Panicf("failed reading data from file: %s", err) 

 } 
 fmt.Printf("\nFile Name: %s", fileName) 

 fmt.Printf("\nSize: %d bytes", len(data)) 

 fmt.Printf("\nData: %s", data) 
 var test string = string(data) 

 start := time.Now() 

 compressed := compressLZW(test) 
 fmt.Println("\nAfter Compression :", compressed) 

 elapsed := time.Since(start) 

 fmt.Println(elapsed) 
 cod := IntToString1(compressed) 

 fmt.Println("required string is", cod) 

 
 uncompression := decompressLZW(compressed) 

 fmt.Println("\nAfter Uncompression :", uncompression) 
} 

func IntToString1(a []int) string { 

 

 b := "" 
 for _, v := range a { 

  if len(b) > 0 { 

   b += "," 
  } 

  b += strconv.Itoa(v) 

 } 
 

 return strings.Replace(b, ",", "", -1) 

} 

C. Run Length Encoding 

Run length encoding (RLE) reduces the size of a sequence 

of characters by more effectively resembling a subsequence 

made up of runs of the same character. A tuple that includes 

the start and outcome of a run is substituted for it. The 

beginning is the position of the substring's first item, and the 

value is the letter that appears there [3]. The process of RLE 

is explained in algorithm 3. 

 
Algorithm_3 Runlength_Encoding 

 
import timeit 

def printRLE(st): 

 
 n = len(st) 

 i = 0 

 while i < n- 1:  
  count = 1 

  while (i < n - 1 and 

   st[i] == st[i + 1]): 
   count += 1 

   i += 1 

  i += 1 

 

  print(st[i - 1] + 

   str(count), 
   end = "") 

if __name__ == "__main__": 

 st = "IamgoingtoChinaIloveBeijingChina" 
 start_time = timeit.default_timer() 

 printRLE(st) 

et = timeit.default_timer() 
print("The time of execution of above program is :", 

      (et-start_time) * 10**3, "ms") 

 

D. AES Encryption 

AES is a symmetric block encryption algorithm with a 

defined block size that's employed to safeguard private data. 

AES uses 10, 12, and 14 encryption repetitions with key 

sizes of 128, 192, and 256 bits supported. A round key 

obtained from the encryption key is mixed with the data 

during each round [4]. The architecture of AES encryption is 

shown in algorithm 4. 
Algorithm_4 AES_Encryption 

package main 

 

import ( 

 "crypto/aes" 

 "encoding/hex" 

 "fmt" 

 "io/ioutil" 

 "log" 

 "time" 

) 

 

func main() { 

 

 

 

 

 

 

https://doi.org/10.54105/ijcns.A1427.04021124
http://www.ijcns.latticescipub.com/


A Comprehensive Methodology for Data Compression and Decompression Utilizing Huffman Coding, LZW 

Compression, and Run-Length Encoding, Integrated with Data Encryption Standard (DES) and Advanced 

Encryption Standard (AES) for Enhanced Security 

10 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number:100.1/ijcns.A142704010524 

DOI: 10.54105/ijcns.A1427.04021124 
Journal Website: www.ijcns.latticescipub.com 

 

 key := "thisis32bitlongpassphraseimusing" // key for 

AES 

 // Reading the input file 

 fmt.Printf("\n\nReading a file in Go lang\n") 

 fileName := "test4.txt" 

 

 data, err := ioutil.ReadFile("test.txt") 

 if err != nil { 

  log.Panicf("failed reading data from file: 

%s", err) 

 } 

 fmt.Printf("\nFile Name: %s", fileName) 

 fmt.Printf("\nSize: %d bytes", len(data)) 

 fmt.Printf("\nData: %s", data) 

 var test string = string(data) 

 // plaintext 

 //pt := "This is a secret" 

 //pt := test 

 c := EncryptAES([]byte(key), test) 

 

 // plaintext 

 fmt.Println(test) 

 

 // ciphertext 

 fmt.Println(c) 

 

 // decrypt 

 DecryptAES([]byte(key), c) 

} 

func timeTrack(start time.Time, name string) { 

 time.Sleep(time.Second) 

 elapsed := time.Since(start) 

 fmt.Printf("%s took %s \n", name, elapsed) 

} 

func EncryptAES(key []byte, plaintext string) string { 

 defer timeTrack(time.Now(), "encryption") 

 //start := time.Now() 

 c, err := aes.NewCipher(key) 

 CheckError(err) 

 out := make([]byte, len(plaintext)) 

 c.Encrypt(out, []byte(plaintext)) 

 //elapsed := time.Since(start) 

 //elapsed := time.Since(start) 

 //fmt.Printf("Sum function took %s", elapsed) 

 return hex.EncodeToString(out) 

} 

func DecryptAES(key []byte, ct string) { 

 ciphertext, _ := hex.DecodeString(ct) 

 c, err := aes.NewCipher(key) 

 CheckError(err) 

 pt := make([]byte, len(ciphertext)) 

 c.Decrypt(pt, ciphertext) 

 s := string(pt[:]) 

 fmt.Println("DECRYPTED:", s) 

} 

func CheckError(err error) { 

 if err != nil { 

  panic(err) 

 } 

} 

E. DES Encryption 

A common private key is used by the cryptosystem DES to 

encrypt and decode data. DES method applies a 

predetermined piece of sequence in plaintext bits and 

encodes it by performing several steps into cipher text of 

identical size and every block is 64 bits. There are 16 similar 

operating cycles or steps. There is also a first and last 

permutation, denoted by the letters IP and FP, respectively 

[5]. Algorithm 5 explains the DES encryption system. 

 
Algorithm_5 DES_Encryption 

package main 

import ( 

 "crypto/cipher" 

 "crypto/des" 

 "fmt" 

 "io/ioutil" 

 "log" 

 "os" 

 "time" 

) 

func main() { 

 triplekey := "12345678" + "12345678" + "12345678" 

 // Reading the input file 

 fmt.Printf("\n\nReading a file in Go lang\n") 

 fileName := "test4.txt" 

 

 data, err := ioutil.ReadFile("test.txt") 

 if err != nil { 

  log.Panicf("failed reading data from file: %s", err) 

 } 

 fmt.Printf("\nFile Name: %s", fileName) 

 fmt.Printf("\nSize: %d bytes", len(data)) 

 fmt.Printf("\nData: %s", data) 

 var test string = string(data) 

 plaintext := []byte(test) 

 block, err := des.NewTripleDESCipher([]byte(triplekey)) 

 

 if err != nil { 

  fmt.Printf("%s \n", err.Error()) 

  os.Exit(1) 

 } 

 fmt.Printf("%d bytes NewTripleDESCipher key with block 

size of %d bytes\n", len(triplekey), block.BlockSize) 

 ciphertext := []byte("abcdef1234567890") 

 iv := ciphertext[:des.BlockSize] // const BlockSize = 8 

 // encrypt 

 mode := cipher.NewCBCEncrypter(block, iv) 

 defer timeTrack(time.Now(), "encryption") 

 encrypted := make([]byte, len(plaintext)) 

 

 mode.CryptBlocks(encrypted, plaintext) 

 fmt.Printf("%s encrypt to %x \n", plaintext, encrypted) 

 //decrypt 

 decrypter := cipher.NewCBCDecrypter(block, iv) 

 decrypted := make([]byte, len(plaintext)) 

 decrypter.CryptBlocks(decrypted, encrypted) 

 fmt.Printf("%x decrypt to %s\n", encrypted, decrypted) 

} 

// Time calculation 

func timeTrack(start time.Time, name string) { 

 time.Sleep(time.Second) 

 elapsed := time.Since(start) 

 fmt.Printf("%s took %s", name, elapsed) 

} 

The main aim of the proposed study is to discuss the 

efficiency in the computational performance using the 

reliable combination of compression encryption. The study 

also aims to: 

▪ To discuss the existing literature related to the area of 

research. 

▪ To obtain statistical data about various compression 

encryption techniques. 

▪ To realize how to select an effective combination. 

The article is structured as follows: The project idea is 

summarized in Section 1. Section 2 provides a summary of the 

methods employed to examine the case.  

Section three of the report goes into further depth on the 

specifics of how it was used. The main subject of Section 4 

is the investigation's findings. Section 5 examines the full 

body of research. 

 

 

 

https://doi.org/10.54105/ijcns.A1427.04021124
http://www.ijcns.latticescipub.com/


Indian Journal of Cryptography and Network Security (IJCNS) 

ISSN: 2582-9238 (Online), Volume-4 Issue-2, November 2024 

11 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number:100.1/ijcns.A142704010524 

DOI: 10.54105/ijcns.A1427.04021124 
Journal Website: www.ijcns.latticescipub.com 

 

II. RELATED WORK 

Carpentieri [5] has investigated the use of both 

compression and encryption on digital records. To be 

effective and secure, communication should be built on a 

scheme defined as two activities that are diverse and 

occasionally at odds with one another.  

Compression and cryptography are these two procedures. 

The adversary of compression is unpredictability, while on 

the other hand, encryption has to infuse randomization into 

the electronic data to ensure protection.  

Poor security, ineffective picture propagation, and 

inefficient image storage are becoming major issues. Tong 

et al. [6] have presented a brand-new picture lossless 

compression coupled encryption technique utilizing chaotic 

maps with all source data unaltered. According to empirical 

results, the reduced data size is around 50% of the actual file 

size, achieving a respectable lossless compression ratio. 

Additionally, the encryption system satisfies several safety 

checks. For large datasets, the privacy of electronic patient 

records (EPR) is a major problem. The EPR information for 

the hospital setting was protected using a compression-then-

encryption-based dual watermarking technology, which 

results in many noteworthy characteristics. The potential of 

the suggested strategy for telemedicine has been 

demonstrated through trials on a sizable quantity of patient 

records. Furthermore, the suggested technique is superior in 

terms of resilience and reliability when compared to the 

current approaches [7]. Hameed et al. [8] have suggested a 

method that allows smooth and encrypted transfer of the Ecg 

waveform from the detector to the screen utilizing buffer 

blocks, peak detection, compression, and encryption 

mechanisms. It was discovered that the suggested system's 

discrete wavelet transform, Huffman coding, and Cipher 

Block Chaining- Advanced Encryption Standard algorithm 

could provide rebuilt waveforms of a top standard than those 

produced by unencrypted compression. 

One of the best methods for protecting information when 

saving and delivering it over a network connection is 

encryption. Ashila et al. [9] have suggested an approach 

utilizing AES-Huffman in conjunction to create lossless 

compressed encrypted documents. when the compression 

step is carried out after encryption. Entropy following 

encryption and compression and the avalanche effect (AE) 

were used to determine the degree of file privacy. According 

to the test findings, it has been shown that AES encryption 

causes files to grow by about 25% of their initial 

dimensions. However, the encrypted file code shrunk by 

around 30% after Huffman compression. The analysis 

showed the use of arithmetic coding with the AES 

(Advanced Encryption Standard) technique to secure and 

condense content. The basic experiment includes first 

encoding the material arithmetically, then encrypting it via 

the AES method, and then transmitting the data. The 

information is encrypted and interpreted at the other end to 

create the user data. The ability of the paper to 

simultaneously encode, decode, and compress data is a 

benefit. The source file size is 128 bits or 256 bits in AES, 

therefore the goal is to use digital arithmetic coding to 

compress the data before encryption [10]. 

Nowadays, since everything is accomplished via 

information technology, there is a much greater demand for 

cryptography [11]. By integrating Huffman coding to 

shorten the content, Kumari et al. have tried to enhance the 

privacy of internet data [12]. The practiced approach is an 

attempt to compact, protect, and conceal the data [13]. It 

outlines the process by employing different encryption 

algorithms one at a time, and the goal is to achieve the level 

of protection possible out of the solutions that are already in 

place [14][15]. The suggested strategy is applied in 

MATLAB2016a, and the results obtained in this research 

demonstrate that this approach is superior to the previous 

methods [16].  Joshi and Sharma have used the LZW 

technique to do data immersion [17]. Then, using the AES 

method, resilience is achieved. Lastly, computerized data is 

embedded in an encrypted picture using a spatial approach 

[18]. Research is conducted using actual dataset images. 

Results for quality factors demonstrate that the suggested 

approach preserved SNR and PSNR values with excellent 

data resilience [19]. Encrypting the digital data may be used 

to overcome the ownership issue. This method starts by 

clustering human readable texts and encrypting them using 

AES and Elliptic Curve Encryption (ECC). Next, it utilizes 

compression to generate cipher blocks, and eventually, it 

attaches the MAC address and the AES key encrypted by 

ECC to generate all of the encrypted messages. The 

findings of the method's explanation and application 

demonstrate that it may decrease encryption time, decryption 

time, and overall operating computational burden without 

sacrificing safety. 

III. METHODOLOGY 

Compression and encryption of data are two different 

procedures but somehow they are interrelated. Both can be 

applied to achieve randomness in the input data. In today’s 

modern communication systems, the computational 

performance and security of data are the most essential 

requirements. In this article, the compression-encryption 

algorithms are employed in combination to analyze the 

performance in terms of time. The procedure followed in the 

study is that first the input data is compressed using various 

algorithms and then the AES and DES encryption techniques 

are applied to it as shown in figure 3. 

 

[Fig.3: Methodology] 

The Main Structure of the Performed Study is Given in 

Figure 4. 

https://doi.org/10.54105/ijcns.A1427.04021124
http://www.ijcns.latticescipub.com/


A Comprehensive Methodology for Data Compression and Decompression Utilizing Huffman Coding, LZW 

Compression, and Run-Length Encoding, Integrated with Data Encryption Standard (DES) and Advanced 

Encryption Standard (AES) for Enhanced Security 

12 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number:100.1/ijcns.A142704010524 

DOI: 10.54105/ijcns.A1427.04021124 
Journal Website: www.ijcns.latticescipub.com 

 

 
[Fig.4: Architecture of the Method] 

After the compression of input data using each 

compression technique, the encryption algorithms were 

applied to the resultant compressed data separately. All the 

codes of the used algorithms were implemented in Visual 

Studio using the Go language. 

IV. RESULTS AND DISCUSSION 

In the proposed article, the performance of different 

compression techniques with AES and DES encryption was 

analyzed. The resultant data revealed that the integration of 

compression encryption greatly depends on the type of data 

and requirements of a user. The study shows that an 

effective combination of compression and encryption can 

achieve the goal of efficient and secure processing and 

transmission of data in today’s modern technological 

approaches like the Internet of Everything (IoE). With 

characteristics like high bandwidth and low latency of 6G, 

these procedures should be considered in the first place. The 

overall results are discussed below. 

A. AES and Compression 

The data extracted from the combined implementation of 

various compression algorithms with AES is shown in 

Figure 5. It can be realized that the encryption time can be 

greatly reduced with these combinations. Overall, the time 

taken for encryption can be represented in chronological 

order as AES+RLE > AES > AES+LZW > AES+Huffman. 

It can be concluded that the AES- Huffman combination is 

very efficient in terms of computational time. 

 

[Fig.5: AES and Compression] 

B. DES and Compression 

The effective integration of DES with different compression 

algorithms achieved some interesting results as shown in 

figure 6. The time complexity was minimized efficiently. 

The obtained data can be represented in chronological order 

as DES > DES+RLE > DES+Huffman > DES+LZW. So, 

the most efficient one is the DES+LZW combination. 

 

[Fig.6: DES and Compression] 

The whole data obtained from the study is shown in 

Figure 7. 

 

[Fig.7: AES, DES, and Encryption] 

V. CONCLUSION 

Because condensed data is much more dependable and 

manageable, data compression is a crucial aspect of 

information safety. Data that has been compressed well is 

reliable, safe, and simple to communicate. Cryptography is 

the basis for any secure and reliable communication 

technique that allows the end users to communicate securely 

and confidentially. The techniques of compression were 

integrated with Huffman Coding, LZW, and RLE 

encryption, and their performance was studied. The study 

shows that the encryption time can be greatly minimized with 

the employment of compression and encryption in 

integration. 

DECLARATION STATEMENT 

After aggregating input from all authors, I must verify the 

accuracy of the following information as the article's author. 
▪ Conflicts of Interest/ Competing Interests: Based on 

my understanding, this article has no conflicts of interest. 

 

 

 

 

 

https://doi.org/10.54105/ijcns.A1427.04021124
http://www.ijcns.latticescipub.com/


Indian Journal of Cryptography and Network Security (IJCNS) 

ISSN: 2582-9238 (Online), Volume-4 Issue-2, November 2024 

13 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number:100.1/ijcns.A142704010524 

DOI: 10.54105/ijcns.A1427.04021124 
Journal Website: www.ijcns.latticescipub.com 

 

▪ Funding Support: This article has not been sponsored 

or funded by any organization or agency. The 

independence of this research is a crucial factor in 

affirming its impartiality, as it has been conducted 

without any external sway. 

▪ Ethical Approval and Consent to Participate: The 

data provided in this article is exempt from the 

requirement for ethical approval or participant consent. 

▪ Data Access Statement and Material Availability: The 

adequate resources of this article are publicly accessible. 

▪ Authors Contributions: The authorship of this article is 

contributed solely. 

REFERENCES 

1. J. D. A. Correa, A. S. R. Pinto, and C. Montez, "Lossy Data 

Compression for IoT Sensors: A Review," Internet of Things, vol. 19, 
p. 100516, 2022. https://doi.org/10.1016/j.iot.2022.100516  

2. R. Bhanot and R. Hans, "A review and comparative analysis of 

various encryption algorithms," International Journal of Security Its 
Applications, vol. 9, no. 4, pp. 289-306, 2015. 

https://www.earticle.net/Article/A245530  

3. A. Moffat, "Huffman coding," ACM Computing Surveys, vol. 52, no. 
4, pp. 1-35, 2019. https://doi.org/10.1145/3342555  

4. H. Dheemanth, "LZW data compression," American Journal of 
Engineering Research, vol. 3, no. 2, pp. 22-26, 2014. 

http://www.ajer.org/  

5. B. Strasser, A. Botea, and D. Harabor, "Compressing optimal paths 

with run length encoding," Journal of Artificial Intelligence Research, 
vol. 54, pp. 593-629, 2015. https://doi.org/10.1613/jair.4931  

6. K.-L. Tsai, Y.-L. Huang, F.-Y. Leu, I. You, Y.-L. Huang, and C.-H. 

Tsai, "AES-128 based secure low power communication for 

LoRaWAN IoT environments," Ieee Access, vol. 6, pp. 45325-

45334, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2852563    

7. K. Logunleko, O. Adeniji, and A. Logunleko, "A comparative study 
of symmetric cryptography mechanism on DES AES and EB64 for 

information security," Int. J. Sci. Res. in Computer Science 

Engineering, vol. 8, no. 1, 2020. 
https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper

_id=1690  

8. B. Carpentieri, "Efficient compression and encryption for digital data 
transmission," Security Communication Networks, vol. 2018, 2018. 

https://doi.org/10.1155/2018/9591768  

9. X.-J. Tong, P. Chen, and M. Zhang, "A joint image lossless 
compression and encryption method based on chaotic map," 

Multimedia Tools Applications, vol. 76, no. 12, pp. 13995-14020, 

2017. https://doi.org/10.1007/s11042-016-3775-6  
10. A. Anand, A. K. Singh, Z. Lv, and G. Bhatnagar, "Compression-then-

encryption-based secure watermarking technique for smart healthcare 

system," IEEE MultiMedia, vol. 27, no. 4, pp. 133- 143, 2020. DOI: 
https://doi.org/10.1109/MMUL.2020.2993269   

11. M. E. Hameed, M. M. Ibrahim, N. Abd Manap, and A. A. 

Mohammed, "A lossless compression and encryption mechanism for 
remote monitoring of ECG data using Huffman coding and CBC-

AES," Future generation computer systems, vol. 111, pp. 829-840, 

2020. https://doi.org/10.1016/j.future.2019.10.010  
12. M. R. Ashila, N. Atikah, E. H. Rachmawanto, and C. A. Sari, "Hybrid 

AES-Huffman Coding for Secure Lossless Transmission," in 2019 

Fourth International Conference on Informatics and Computing 
(ICIC), 2019, pp. 1-5: IEEE. DOI: 

https://doi.org/10.1109/ICIC47613.2019.8985899   
13. P. S. Mukesh, M. S. Pandya, and S. Pathak, "Enhancing AES 

algorithm with arithmetic coding," in 2013 International Conference 

on Green Computing, Communication and Conservation of Energy 
(ICGCE), 2013, pp. 83-86: IEEE. DOI: 

https://doi.org/10.1109/ICGCE.2013.6823404  

14. M. Kumari, V. Pawar, P. J. I. J. o. N. S. Kumar, and I. A. Vol, "A 

novel image encryption scheme with Huffman encoding and 

steganography technique," International Journal of Network Security 

Its Applications, vol. 11, 2019 2019. 
https://ssrn.com/abstract=3847524  

15. A. K. Joshi and S. Sharma, "Reversible data hiding by utilizing AES 

encryption and LZW compression," in Proceedings of International 
Conference on Recent Advancement on Computer and 

Communication, 2018, pp. 73-81: Springer. 

https://doi.org/10.1007/978-981-10-8198-9_8  

16. T. Yue, C. Wang, and Z.-x. Zhu, "Hybrid encryption algorithm based 
on wireless sensor networks," in 2019 IEEE international conference 

on mechatronics and automation (ICMA), 2019, pp. 690- 694: IEEE. 

DOI: https://doi.org/10.1109/ICMA.2019.8816451   
17. Sisodia, Mr. A., Mrs. Swati, & Hashmi, Mrs. H. (2020). 

Incorporation of Non-Fictional Applications in Wireless Sensor 

Networks. In International Journal of Innovative Technology and 
Exploring Engineering (Vol. 9, Issue 11, pp. 42–49). 

https://doi.org/10.35940/ijitee.k7673.0991120    

18. Patil, Mrs. Suvarna. S., & Vidyavathi, Dr. B. M. (2022). Application 
o f Advanced Machine Learning and Artificial Neural Network 

Methods in Wireless Sensor Networks Based Applications. In 

International Journal of Engineering and Advanced Technology (Vol. 
11, Issue 3, pp. 103–109). 

https://doi.org/10.35940/ijeat.c3394.0211322   

19. Sharma, P. (2023). Zigbee based Wireless Sensor Network for Smart 
Energy Meter. In International Journal of Recent Technology and 

Engineering (IJRTE) (Vol. 12, Issue 3, pp. 20–27). 

https://doi.org/10.35940/ijrte.c7861.0912323   

20. Chitransh, A., & Kalyan, B. S. (2021). ARM Microcontroller Based 

Wireless Industrial Automation System. In Indian Journal of 

Microprocessors and Microcontroller (Vol. 1, Issue 2, pp. 8–11). 
https://doi.org/10.54105/ijmm.b1705.091221   

21. Pramod, K., Mrs. Durga, M., Apurba, S., & Shashank, S. (2023). An 

Efficient LEACH Clustering Protocol to Enhance the QoS of WSN. 
In Indian Journal of Artificial Intelligence and Neural Networking 

(Vol. 3, Issue 3, pp. 1–8). 
https://doi.org/10.54105/ijainn.a3822.043323  

AUTHOR PROFILE 

Sangeen Khan, I have completed a BS in Computer 

Science from the University of Swabi, Pakistan. Currently, I 
am doing an MS in Information and Communication 

Engineering at the University of Science and Technology 

Beijing, China. My research interests are 1) Privacy-

preserving Computing. 2) Homomorphic Encryption. 3) 

Differential Privacy. 4) Cryptography. 

 
Disclaimer/Publisher’s Note: The statements, opinions and 

data contained in all publications are solely those of the 

individual author(s) and contributor(s) and not of the Lattice 

Science Publication (LSP)/ journal and/ or the editor(s). The 

Lattice Science Publication (LSP)/ journal and/or the 

editor(s) disclaim responsibility for any injury to people or 

property resulting from any ideas, methods, instructions or 

products referred to in the content. 
 

 

 

https://doi.org/10.54105/ijcns.A1427.04021124
http://www.ijcns.latticescipub.com/
https://doi.org/10.1016/j.iot.2022.100516
https://www.earticle.net/Article/A245530
https://doi.org/10.1145/3342555
http://www.ajer.org/
https://doi.org/10.1613/jair.4931
https://doi.org/10.1109/ACCESS.2018.2852563
https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=1690
https://www.isroset.org/journal/IJSRCSE/full_paper_view.php?paper_id=1690
https://doi.org/10.1155/2018/9591768
https://doi.org/10.1007/s11042-016-3775-6
https://doi.org/10.1109/MMUL.2020.2993269
https://doi.org/10.1016/j.future.2019.10.010
https://doi.org/10.1109/ICIC47613.2019.8985899
https://doi.org/10.1109/ICGCE.2013.6823404
https://ssrn.com/abstract=3847524
https://doi.org/10.1007/978-981-10-8198-9_8
https://doi.org/10.1109/ICMA.2019.8816451
https://doi.org/10.35940/ijitee.k7673.0991120
https://doi.org/10.35940/ijeat.c3394.0211322
https://doi.org/10.35940/ijrte.c7861.0912323
https://doi.org/10.54105/ijmm.b1705.091221
https://doi.org/10.54105/ijainn.a3822.043323

