
Indian Journal of Cryptography and Network Security (IJCNS)

ISSN: 2582-9238 (Online), Volume-4 Issue-1, May 2024

1

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.A1426054124
DOI: 10.54105/ijcns.A1426.04010524

Journal Website: www.ijcns.latticescipub.com

Security of the Secp256k1 Elliptic Curve used in

the Bitcoin Blockchain

Kannan Balasubramanian

Abstract: The article delves into the intricate characteristics

and security properties of the secp256k1 elliptic curve used for

the generation of addresses in the Bitcoin blockchain. The

Bitcoin blockchain is a decentralized digital ledger that records

all transactions made with Bitcoin cryptocurrency. In this work,

the secp256k1 elliptic curve and its parameters and the method of

generating private and public keys using random numbers are

described. While the private key allows for the signing of

transactions to spend Bitcoin, the corresponding public key and

address enable others to verify transactions and send funds to

that specific address on the blockchain, ensuring security,

authenticity, and privacy in the decentralized network. The

attacks on the use of secp256k1 for generating the bitcoin

addresses like the Brute force attack, twist attack, fault attacks,

and side channel attacks in the implementation of the elliptic

curve are discussed. By maintaining the security and integrity of

secp256k1, we can ensure that cryptographic operations, such as

digital signatures and key exchanges, remain uncompromised. If

the curve's security were compromised, malicious users could

potentially derive private keys from public keys, leading to

unauthorized transactions, double-spending, or other malicious

activities. The security of implementation can be enhanced by

ensuring cryptographic libraries and software implementations

that utilize secp256k1 undergo thorough testing and validation to

ensure correct and secure operations. The important attacks on

blockchain technology like the 51% attack, Sybil attack, Double-

Spending attack, and Smart Contract vulnerabilities are

discussed. Through a comprehensive exploration, readers will

gain insights into why this particular elliptic curve was chosen

for use in Bitcoin's cryptographic protocols, highlighting its role

in ensuring the robustness and integrity of the blockchain

ecosystem.

Keywords: Elliptic Curves, Brute Force Attack, Twist Attack,

Side-Channel Attacks, Random Number Generators, Sybil

Attack, Double-Spending Attack

I. INTRODUCTION

The Bitcoin blockchain is a decentralized digital ledger

that records all transactions made with Bitcoin

cryptocurrency[1]. Each transaction is verified by a network

of computers (nodes) through a process called mining,

where transactions are bundled into blocks and added to the

chain in chronological order.

Manuscript received on 01 December 2023 | Revised

Manuscript received on 09 December 2023 | Manuscript

Accepted on 15 May 2024 | Manuscript published on 30 May

2024.
* Correspondence Author(s)

Dr. Kannan Balasubramanian*, Professor, School of Computing,

SASTRA University, Thanjavur. E-mail: kannanb@cse.sastra.edu, ORCID
ID: 0000-0003-1134-0345

© The Authors. Published by Lattice Science Publication (LSP). This is an
open access article under the CC-BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

This immutable and transparent system ensures security,

and consensus, and prevents double-spending without the

need for a central authority. The security of the Bitcoin

blockchain is fundamentally rooted in Elliptic Curve

Cryptography (ECC). Specifically, Bitcoin uses ECC to

generate public and private key pairs that facilitate secure

transactions. When a user wants to send Bitcoin, their

private key signs the transaction, and the recipient uses the

sender's public key to verify its authenticity. This

cryptographic mechanism ensures that only the owner of the

private key can authorize transactions, maintaining the

integrity and security of the decentralized ledger system.

The hashing function employed in the Bitcoin blockchain is

SHA-256 (Secure Hash Algorithm 256-bit). This

cryptographic hash function takes an input of any size and

produces a fixed-size 256-bit output, ensuring that even a

tiny change in the input produces a significantly different

output. Each block in the Bitcoin blockchain contains a

unique cryptographic hash, which includes the hash of the

previous block. This chaining mechanism ensures the

immutability of the blockchain; altering any transaction in a

block would necessitate recalculating all subsequent blocks'

hashes, making the system tamper-evident and enhancing its

security. The generic structure of the blockchain and the

generic structure of a block are shown in Figure 1 and

Figure 2.

Figure 1: The Generic Structure of a Blockchain

Figure 2: The Generic Structure of a Block

The secp256k1 elliptic curve is a specific elliptic curve

used in Bitcoin for cryptographic functions, particularly for

generating public and private key pairs.

Pointer to Prev Block’s Hash

Nonce

Time Stamp

Merkle Root

List of Transactions

Previous Hash

Transactions and

Other Data

(Genesis Block)

Previous Hash

Transactions and

Other Data

Previous Hash

Transactions and

Other Data

https://doi.org/10.54105/ijcns.A1426.04010524
http://www.ijcns.latticescipub.com/
mailto:kannanb@cse.sastra.edu
https://orcid.org/0000-0003-1134-0345
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijcns.A1426.04010524&domain=https://www.ijcns.latticescipub.com

Security of the Secp256k1 Elliptic Curve used in the Bitcoin Blockchain

2

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.A1426054124
DOI: 10.54105/ijcns.A1426.04010524

Journal Website: www.ijcns.latticescipub.com

1. Generate Private Key ():

 private key = Random256Bits ()

2. Generate Public Key (private_key):

 public_key = secp256k1_base_point * private_key

 return public_key

3. Generate Bitcoin Address (public_key):

 hash_1 = SHA-256(public_key)

 hash_2 = RIPEMD-160(hash_1)

 checksum = SHA-256(SHA-256(hash_2)) [:4]

 address = Base58Check Encode (hash_2 + checksum)

 return address

Bitcoin addresses are derived from public keys, and the

security of Bitcoin relies on the computational difficulty of

solving certain mathematical problems related to this elliptic

curve. It is believed to be secure against certain types of

attacks, including those based on the discrete logarithm

problem. The secp256k1 curve was chosen, in part, for its

efficiency in terms of both computation and storage. The

key characteristics of the secp256k1 elliptic curve are

described in the next section.

A. Description of the Elliptic Curve

The equation for secp256k1 is y2 = x3 + 7. The

parameters for this are discussed in [2]. The curve operates

over a finite field of prime order. The field size is a prime

number, specifically 2^ {256} - 2^ {32} - 2^9 - 2^8 - 2^7 -

2^6 - 2^4 - 1 which equals the following number.

115792089237316195423570985008687907853269984665

640564039457584007908834671663

The base point or generator point, often denoted as G, is a

specific point on the curve. The coordinates of G are pre-

defined and are part of the standard: The generator point

G=(x,y) is given below:

(550662630222773436695787188951685343262506034537

77594175500187360389116729240,

326705100207588169780830851305070431844712733806

59243275938904335757337482424)

The order of the generator point (G) is a prime number and

denotes the number of points on the curve.

n =

115792089237316195423570985008687907852837564279

074904382605163141518161494337

B. Method for Generating Private and Public Keys

Generating private and public keys in the Bitcoin

protocol typically involves using elliptic curve cryptography

(specifically, the secp256k1 curve) to produce these keys.

Step 1: Choose a Random Private Key:

Start by generating a random 256-bit number. This

number serves as your private key. This private key is a

crucial piece of information that you must keep secret.

Anyone who has access to this key can control the

associated Bitcoins.

Step 2: Generate the Public Key:

Use elliptic curve multiplication to derive a public key

from the private key. The secp256k1 curve equation y2 = x3

+ 7 over the finite field is used for this purpose. Multiply the

base point of the curve (known as the generator point) by the

private key to get the corresponding public key.

Step 3: Generate the Bitcoin Address:

The Bitcoin address is derived from the public key but

goes through a hashing and encoding process. The public

key is first hashed using the SHA-256 algorithm and then

RIPEMD-160. This results in a 160-bit hash. This hash is

then encoded into a format called Base58Check, which

produces the familiar Bitcoin address format you might

recognize (starts with a '1' or '3' for mainnet addresses).

The Pseudocode for generating the private and public

keys is given in Figure 3. A Python program that

implements private and public key algorithms is given in

Appendix A. The Python program in Appendix B generates

the bitcoin addresses from the private key and public key

using the python-bitcoin-lib library.

Figure 3: Method for Generating Private and Public

Keys in Bitcoin Blockchain

II. SECURITY ATTACKS ON THE SECP256K1

ELLIPTIC CURVE

The secp256k1 elliptic curve is widely used in various

cryptographic applications, most notably as the basis for

Bitcoin's public key infrastructure. As such, it has been

scrutinized extensively by researchers and cryptanalysts.

The various attacks on the use secp256k1 curve include

Brute force attacks, Quantum attacks, side-channel attacks,

fault attacks, and flaws in the implementation. The brute

force attack involves solving the elliptic curve discrete

logarithm problem (ECDLP). The security of elliptic curve

cryptography (ECC) relies heavily on the computational

difficulty of solving the ECDLP problem. Given current

computational resources and techniques, brute-forcing a

secp256k1 private key is computationally infeasible. The

Quantum attack on the ECC-based Cryptographic systems

by using algorithms like Shor's algorithm to solve the

ECDLP in polynomial time. However, as of now, there's no

known practical quantum algorithm that can break

secp256k1. Nevertheless, the emergence of quantum

computing remains a potential long-term threat to ECC

systems.

The side-channel attacks do not target the mathematical

properties of the curve but exploit weaknesses in the

implementation. Side-channel attacks include attacks that

use timing information, power consumption, or

electromagnetic leaks to gain information about secret keys.

The Fault attacks involve intentionally introducing faults

(errors) into cryptographic computations and observing the

results to extract secret information. For secp256k1,

researchers have studied fault attacks, and while they might

introduce vulnerabilities in specific implementations, they

don't break the fundamental security of the curve itself.

Flaws may also exist in the software and hardware

implementation of the Cryptographic systems. Poor

implementations, random number generation issues, or other

software bugs can inadvertently weaken security. However,

as with any cryptographic system, continuous monitoring,

research, and adherence to best practices are crucial to

maintaining the security of the use of sec256k1 elliptic

Curve.

https://doi.org/10.54105/ijcns.A1426.04010524
http://www.ijcns.latticescipub.com/

Indian Journal of Cryptography and Network Security (IJCNS)

ISSN: 2582-9238 (Online), Volume-4 Issue-1, May 2024

3

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.A1426054124
DOI: 10.54105/ijcns.A1426.04010524

Journal Website: www.ijcns.latticescipub.com

A. Subgroup Attack and Twist Attack

There is a subgroup attack on Elliptic Curves using

which an attacker can obtain the private key thus breaking

the cryptosystem. Assume an elliptic curve has a subgroup

H with a prime number of elements. This count is called the

group's order. Alice wants insights into Bob's private key, b.

She selects a point, P, from subgroup H and tells Bob it's her

public key, asking for an encrypted message. Bob calculates

Q = b*P as a shared secret, encrypting a message C for

Alice. Knowing Q belongs to the H subgroup, Alice

attempts to decrypt C using points like P, 2P, 3P, etc., until

success at kP. Now, with Q = kP and Q = b*P, Alice deduces

k = b mod q, with q being H's order.

By using a specific curve point, Alice gains knowledge

about Bob's private key. However, this attack doesn't apply

to the elliptic curve secp256k1 due to its prime group

element count, meaning no non-trivial subgroups exist

according to Lagrange's Theorem. To modify the small

subgroup attack, Alice selects a point from a curve variant,

E2, with a different constant term than secp256k1's y^2 =

x^3 + 7, like y^2 = x^3 + 2. This E2 curve possesses small

subgroups. If Bob's elliptic curve multiplication ignores P's

actual curve, his software computes on E2. Thus, Alice can

execute the aforementioned small subgroup attack. This is

called the Twist attack on the Elliptic Curve [3].

B. Weak Nonce Attack on ECDSA Signature

Alice signs a message using the Elliptic Curve Digital

Signature Algorithm (ECDSA). Alice starts with her private

key, generating her public key through elliptic curve

cryptography with the equation y2 = x3+7 Mod N. Using the

generator point G, Alice derives her private key as G added

to itself a random number of times. Her public key is

derived from M times G. Alice signs a message with

ECDSA using R and S values. Bob verifies the signed

message using R, S, and Alice's public key. A particular type

of attack called the Lenstra-Lenstra-Lovasz (LLL) method

can be used on the signature to get the private key [4].

C. Other Attacks on the Elliptic Curve

Several other attacks including fault attacks on the use of

the elliptic curve secp256k1 have been discussed

[5][17][18][6][7]. Comparison of the secp256k1 with other

Curves like the Edwards curve has also been discussed [8].

To avoid backdoor attacks on the use of Elliptic Curves, the

use of multiple Elliptic Curves has been suggested

[9][20][21].

III. VULNERABILITIES IN THE IMPLEMENTATION

OF THE ELLIPTIC CURVE

While secp256k1 is considered to be secure when used

correctly, there are potential vulnerabilities or risks

associated with its usage:

1. Implementation Flaws: One of the primary concerns

with cryptographic algorithms is not necessarily the

algorithm itself but how it's implemented. Poorly

coded software libraries or hardware can introduce

vulnerabilities, such as side-channel attacks where an

attacker can gain information about the private key by

monitoring physical aspects like power consumption or

timing.

2. Reused Addresses: While not a vulnerability in

secp256k1 itself, reusing Bitcoin addresses can lead to

privacy and security concerns. If an attacker manages

to compromise a single private key associated with a

reused address, they could potentially access all funds

sent to that address. It's essential to generate a new

address for each transaction to minimize such risks.

3. Incorrect Key Management: Human errors can be a

significant source of vulnerabilities. If individuals fail

to securely manage their private keys, such as storing

them on insecure devices, sharing them, or losing

them, it can lead to unauthorized access and theft of

Bitcoin funds.

4. Weak Random Number Generation: Generating private

keys requires a robust source of randomness. If the

random number generator used to create private keys is

flawed or predictable, it could lead to the generation of

weak or easily guessable keys, making them

susceptible to brute-force attacks.

To mitigate these risks, developers, users, and

organizations involved with Bitcoin and other blockchain

technologies should follow best practices for cryptographic

key management, regularly update their software and

hardware, use well-reviewed and trusted libraries, and

remain informed about potential advancements or threats in

the field of cryptography[10][11][12][19][13][14].

IV. RANDOM NUMBER GENERATORS FOR THE

GENERATION OF PRIVATE KEYS

A random number generator is used to generate the

private key in the Bitcoin Blockchain. Various methods for

generating the random numbers are available including

Cryptographically Secure Pseudorandom Number

Generators (CSPRNGs), Operating System Provided

Randomness, Hardware Random Number Generators, and

Entropy Accumulation. Most systems rely on CSPRNGs to

generate random numbers that are suitable for cryptographic

operations. These generators produce sequences of numbers

that appear random and unpredictable, making them suitable

for generating private keys. In the context of Bitcoin and

secp256k1, CSPRNGs are used to produce 256-bit numbers

that serve as private keys. These numbers must be truly

random to ensure the security of the associated Bitcoin

addresses. Many Bitcoin wallet applications leverage the

operating system's built-in mechanisms for randomness. For

instance, operating systems like Linux provide /dev/random

or /dev/random interfaces that offer random data. These

sources are often considered to be sufficiently random for

cryptographic purposes. Bitcoin software can tap into this

randomness to generate private keys.

For even higher security, some systems might use

hardware-based random number generators. These devices

generate random numbers based on physical processes, such

as electronic noise or radioactive decay. Using HRNGs can

reduce the reliance on software-based sources of

randomness and provide an additional layer of security.

https://doi.org/10.54105/ijcns.A1426.04010524
http://www.ijcns.latticescipub.com/

Security of the Secp256k1 Elliptic Curve used in the Bitcoin Blockchain

4

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.A1426054124
DOI: 10.54105/ijcns.A1426.04010524

Journal Website: www.ijcns.latticescipub.com

To ensure randomness, systems might accumulate

entropy from various sources. This could include user

interactions, system events, and other unpredictable factors.

By combining entropy from multiple sources, systems can

produce more robust random numbers suitable for private

key generation.

A. Attacks on the Bitcoin Blockchain Technology

Over the years, the Bitcoin blockchain has faced various

attacks and vulnerabilities [15]. Some of the major attacks

and issues that have been observed are the 51% attack, the

Sybil attack, Transaction Malleability, Denial-of-Service

(DoS) attacks, fork attacks, Smart Contract vulnerabilities,

and Mining Centralization attacks.

The 51% attack is one of the most discussed potential

threats to the Bitcoin network. If a single entity or a group of

entities controls more than 50% of the network's mining

power, they can potentially alter transaction histories,

double-spend coins, or even halt transactions. However,

executing a 51% attack on Bitcoin has become increasingly

difficult due to its large and distributed mining network. In a

Sybil attack, an attacker tries to control a significant portion

of the network nodes to influence the network's behavior.

This can be used to spread false information or disrupt the

network. Bitcoin's proof-of-work consensus mechanism

makes it challenging for a single entity to control a majority

of nodes, reducing the risk of such attacks.

Transaction Malleability: is a vulnerability that allows an

attacker to change the transaction ID before it is confirmed

on the blockchain. While it doesn't allow theft of funds

directly, it can confuse transaction monitoring systems and

lead to potential issues for services relying on unconfirmed

transaction IDs. The Denial-of-Service (DoS) attacks can

target the Bitcoin network, aiming to flood nodes with

unnecessary or malicious data, thereby disrupting the

network's functionality. These attacks can slow down

transaction processing times and cause inconvenience to

users.

A fork in the blockchain can occur due to software bugs

or intentional actions by miners. While not necessarily

malicious, unintentional forks can create confusion and

disrupt consensus. Deliberate forks can be more

problematic, as they can lead to a split in the community and

the creation of new competing chains (like Bitcoin Cash or

Bitcoin SV). While Bitcoin's scripting language is limited

compared to other blockchains like Ethereum [16], there

have been instances where vulnerabilities in smart contracts

or custom scripts have been exploited, leading to loss of

funds or disruptions. Although Mining Centralization is not

a direct attack, the increasing centralization of mining power

in specific regions or by specific entities can pose a risk to

the network's decentralization and security. Centralized

mining pools have a significant influence over transaction

processing and network upgrades. Despite these potential

vulnerabilities and attacks, Bitcoin has proven resilient over

the years, largely due to its robust network of nodes, miners,

developers, and community participants. Continuous

research, development, and vigilance are essential to

mitigate risks and maintain the network's integrity.

V. CONCLUSIONS

This research focussed on the security of the usage of the

Elliptic Curve used in the Bitcoin Blockchain. With the

prevention of brute force attacks, twist attacks, fault attacks,

and side-channel attacks on the implementation of the

secp256k1 elliptic curve, the robustness and integrity of the

Bitcoin Blockchain can be improved. This research article

discussed the vulnerabilities that may arise in the software

implementation of the Bitcoin Elliptic Curve and methods to

improve the security of the Bitcoin Blockchain by

preventing these vulnerabilities from affecting Bitcoin

transactions.

Appendix A

A Python Program to generate private and public keys using

the secp256k1 curve in the Bitcoin blockchain.

pip install ecdsa

import ecdsa

from ecdsa import SigningKey, SECP256k1

Curve parameters

p = int

("FFFFFFFF00000001000000000000000000000000FFFFF

FFFFFFFFFFFFFFFFFFF", 16)

a = -3

b = int

("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0C

C53B0F63BCE3C3E27D2604B", 16)

Generator point (base point)

G_x = int

("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2

DCE28D959F2815B16F81798", 16)

G_y =

int("483ADA7726A3C4655DA4FBFC0E1108A8FD17B44

8A68554199C47D08FFB10D4B8", 16)

G = ecdsa.ellipticcurve.Point(SECP256k1.curve, G_x, G_y,

1)

Order of the subgroup generated by G

n = int

("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA

7179E84F3B9CAC2FC632551", 16)

Create a key pair

private_key = SigningKey.generate(curve=SECP256k1)

public_key = private_key.get_verifying_key()

Output:

Private Key:

cfe55b43b13aa4dfeb620e40e49a7d33ff35a162b948093b87a

3ae8e9c48cf11

Public Key:

8d0219bb17ad3a1d6f2dda7a3afce035c35aa2aae5ed85f53f0

913aaea0a9a7d6f33d9f4cfa0eab9036d47b767eb2fd4a23809

e8021f9a976a882bba5b248346

Signature:

30ce478f29ccccb0669cb1b0957fff719fb5bc8582a859aa62f

39c23cb2115fccabf19f7bc8088ed37f334467bad668ffb015f

8b1b4988d952b66653c575f13d

Verification Result: True

https://doi.org/10.54105/ijcns.A1426.04010524
http://www.ijcns.latticescipub.com/

Indian Journal of Cryptography and Network Security (IJCNS)

ISSN: 2582-9238 (Online), Volume-4 Issue-1, May 2024

5

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.A1426054124
DOI: 10.54105/ijcns.A1426.04010524

Journal Website: www.ijcns.latticescipub.com

Appendix B

A Python program to generate Bitcoin addresses using

public and private keys.
pip install python-bitcoinlib

import os

from bitcoin.wallet import CBitcoinSecret, P2PKHBitcoinAddress

Generate a random private key (you can also use your private

key)

private_key = CBitcoinSecret.from_secret_bytes(os.urandom(32))

Derive the public key from the private key

public_key = private_key.pub

Create a Bitcoin address from the public key

address = P2PKHBitcoinAddress.from_pubkey(public_key)

Print the generated address and private key

print("Bitcoin Address:", address)

print("Private Key:", private_key)

output:

 Bitcoin Address: 1BSZ7Jns6yfMKub6Vi3SBnAYvVz9yV2VkH

Private Key:

L4jshZFxYiEPg6TgxrJ6ZkZeXZbZTC7YXA25ggmomkhHPvnAi

qZF

DECLARATION STATEMENT

Funding No, I did not receive.

Conflicts of Interest
No conflicts of interest to the best of my

knowledge.

Ethical Approval and
Consent to Participate

No, the article does not require ethical

approval and consent to participate with

evidence.

Availability of Data and
Material/ Data Access

Statement

Not relevant.

Authors Contributions I am only the sole author of the article

REFERENCES

1. Bitcoin, https://www.bitcoin.org
2. SEC2 Recommended Elliptic Curve Domain Parameters,

https://secg.org/sec2-v2.pdf

3. Dangers of using secp256k1 for encryption-Twist Attacks,
https://github.com/christianlundkvist/blog/blob/master/2020_05_26_

secp256k1_twist_attacks/secp256k1_twist_attacks.md

4. M.M.Ulla, D.S.Sakkari, Research on Elliptic Curve Crypto System
with Bitcoin Curves – SECP256k1, NIST256p, NIST521p and LLL,

Journal of Cyber Security and Mobility, Vol. 12 1, 103–128. M.doi:

10.13052/jcsm2245-1439.1215 https://doi.org/10.13052/jcsm2245-
1439.1215

5. M. Semmouni, A. Nitaj, M. Belkasmi. Bitcoin Security with a

Twisted Edwards Curve. Journal of Discrete Mathematical Sciences
and Cryptography, non, In press. HAL-02320909,

https://core.ac.uk/download/237332050.pdf

6. H.Mayer, ECDSA Security in Bitcoin and Ethereum: a Research
Survey, https://www.coinfabrik.com/wp-

content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-

Ethereum-a-Research-Survey.pdf
7. A.Takahashi, M.Tibouchi, Degenerate Fault Attacks on Elliptic

Curve Parameters in OpenSSL,

https://www.research.ed.ac.uk/en/publications/degenerate-fault-
attacks-on-elliptic-curve-parameters-in-openssl

8. T.P.Dusane, Generation, Verification, and Attacks on Elliptic Curves

and their Generation, Verification, and Attacks on Elliptic Curves
and their Applications in Signal Protocol Applications in Signal

Protocol, Masters Thesis, Rochester Institute of Technology,

https://scholarworks.rit.edu/theses/10715/
9. W.Bi, X.Jia, M.Zheng, A Secure Multiple Elliptic Curves Digital

Signature Algorithm for Blockchain

https://arxiv.org/ftp/arxiv/papers/1808/1808.02988.pdf
10. A.J.DiScala, A.Gangemi, G.Romeo, G.Vernetti, Special Subsets of

Addresses for Blockchains Using the secp256k1 Curve,

https://www.mdpi.com/2227-7390/10/15/2746 10.
11. P.Urien, Innovative Countermeasures to Defeat Cyber Attacks

Against Blockchain Wallets: A Crypto Terminal Use Case,
https://arxiv.org/pdf/2303.17206

12. S.Zhai, Y.Yang, J.Li, C.Qiu, J.Zhao, Research on the application of
Cryptography on the Blockchain, Journal of Physics,

https://iopscience.iop.org/article/10.1088/1742-

6596/1168/3/032077/pdf
13. M.M.Ulla, M.S.Khan, Preethi, D.S.Kakkari, Security and

Performance Analysis of Elliptic Curve Crypto System using Bitcoin

Curves, IAENG International Journal of Computer Science, 50(2),
June 2023.

14. D.Aggarwal, G.K.Brennen, T.Lee, M.Santha, M.Tomomichel,

Quantum attacks on Bitcoin, and how to protect against them,
https://arxiv.org/abs/1710.10377

15. Y.Chen, H.Chen, Y.Zhang, M. Han, M.Siddula, Z.Cai, A Survey on

Blockchain Systems: Attacks, defenses and Privacy Preservation,
High-Confidence Computing,2(2022)

https://doi.org/10.1016/j.hcc.2021.100048

16. Ethereum, https://www.ethereum.org
17. Shaldehi, A. H., Shaldehi, M. H., & Hedayatpanah, B. (2022). A

Model for Combining Allegorical Mental Imagery with Intuitive

Thinking in Understanding the Limit of a Function. In Indian Journal
of Advanced Mathematics (Vol. 2, Issue 2, pp. 1–7).

https://doi.org/10.54105/ijam.d1128.102222

18. Dhar, S., Biswas, A., & Singh, N. (2019). SciMath: A Mathematical
Information Retrieval System using Signature Based B Tree

Indexing. In International Journal of Innovative Technology and

Exploring Engineering (Vol. 8, Issue 11, pp. 234–244).
https://doi.org/10.35940/ijitee.k1298.0981119

19. Ghorai, A. (2023). Mung Seeds Under Constant Low Potential
Difference During Post-Germination When Sprout Length Grows. In

Indian Journal of Advanced Physics (Vol. 2, Issue 2, pp. 6–8).

https://doi.org/10.54105/ijap.a1036.102222
20. Lata, K., & Khan, S. S. (2019). Experimental Analysis of Machine

Learning Algorithms Based o n Agricultural Dataset f or Improving

Crop Yield Prediction. In International Journal of Engineering and
Advanced Technology (Vol. 9, Issue 1, pp. 3246–3251).

https://doi.org/10.35940/ijeat.f9308.109119

21. Wanjau, S. K., Wambugu, G. M., & Oirere, A. M. (2022). Network
Intrusion Detection Systems: A Systematic Literature Review o f

Hybrid Deep Learning Approaches. In International Journal of

Emerging Science and Engineering (Vol. 10, Issue 7, pp. 1–16).

https://doi.org/10.35940/ijese.f2530.0610722

AUTHOR PROFILE

Dr. Kannan Balasubramanian, is currently working as

Professor in the School of Computing, Sastra University,
Thanjavur. He received his M.Sc. (Tech) degree in

Computer Science from BITS Pilani in 1989 and M.

Tech degree in Computer Science and Engineering from
IIT Bombay in 1991 and Ph.D degree in Computer

Science from UCLA in 1999. He has worked on the areas of multiple

access protocols for optical WDM networks and scheduling algorithms for
input queued switches focussing on simulation of networks and network

switches. He has published two books with IGI-Global and has published
in many International Journals and Conferences. His areas of Interest are

Computer Networks, Cryptography and Network Security, Cyber Security

and Machine Learning for Cryptography.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Lattice

Science Publication (LSP)/ journal and/ or the editor(s). The

Lattice Science Publication (LSP)/ journal and/or the

editor(s) disclaim responsibility for any injury to people or

property resulting from any ideas, methods, instructions or

products referred to in the content.

https://doi.org/10.54105/ijcns.A1426.04010524
http://www.ijcns.latticescipub.com/
https://www.bitcoin.org/
https://github.com/christianlundkvist/blog/blob/master/2020_05_26_secp256k1_twist_attacks/secp256k1_twist_attacks.md
https://github.com/christianlundkvist/blog/blob/master/2020_05_26_secp256k1_twist_attacks/secp256k1_twist_attacks.md
https://doi.org/10.13052/jcsm2245-1439.1215
https://doi.org/10.13052/jcsm2245-1439.1215
https://core.ac.uk/download/237332050.pdf
https://www.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-Ethereum-a-Research-Survey.pdf
https://www.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-Ethereum-a-Research-Survey.pdf
https://www.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-Ethereum-a-Research-Survey.pdf
https://www.research.ed.ac.uk/en/publications/degenerate-fault-attacks-on-elliptic-curve-parameters-in-openssl
https://www.research.ed.ac.uk/en/publications/degenerate-fault-attacks-on-elliptic-curve-parameters-in-openssl
https://scholarworks.rit.edu/theses/10715/
https://arxiv.org/ftp/arxiv/papers/1808/1808.02988.pdf
https://www.mdpi.com/2227-7390/10/15/2746%2010
https://arxiv.org/pdf/2303.17206
https://iopscience.iop.org/article/10.1088/1742-6596/1168/3/032077/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1168/3/032077/pdf
https://arxiv.org/abs/1710.10377
https://doi.org/10.1016/j.hcc.2021.100048
https://doi.org/10.54105/ijam.d1128.102222
https://doi.org/10.35940/ijitee.k1298.0981119
https://doi.org/10.54105/ijap.a1036.102222
https://doi.org/10.35940/ijeat.f9308.109119
https://doi.org/10.35940/ijese.f2530.0610722

