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Security of the Secp256k1 Elliptic Curve used in 

the Bitcoin Blockchain 

Kannan Balasubramanian 

Abstract: The article delves into the intricate characteristics 

and security properties of the secp256k1 elliptic curve used for 

the generation of addresses in the Bitcoin blockchain.  The 

Bitcoin blockchain is a decentralized digital ledger that records 

all transactions made with Bitcoin cryptocurrency.  In this work,  

the secp256k1 elliptic curve and its parameters and the method of 

generating private and public keys using random numbers are 

described.  While the private key allows for the signing of 

transactions to spend Bitcoin, the corresponding public key and 

address enable others to verify transactions and send funds to 

that specific address on the blockchain, ensuring security, 

authenticity, and privacy in the decentralized network.  The 

attacks on the use of secp256k1 for generating the bitcoin 

addresses like the Brute force attack, twist attack, fault attacks, 

and side channel attacks in the implementation of the elliptic 

curve are discussed. By maintaining the security and integrity of 

secp256k1, we can ensure that cryptographic operations, such as 

digital signatures and key exchanges, remain uncompromised. If 

the curve's security were compromised, malicious users could 

potentially derive private keys from public keys, leading to 

unauthorized transactions, double-spending, or other malicious 

activities. The security of implementation can be enhanced by 

ensuring cryptographic libraries and software implementations 

that utilize secp256k1 undergo thorough testing and validation to 

ensure correct and secure operations. The important attacks on 

blockchain technology like the 51% attack, Sybil attack, Double-

Spending attack, and Smart Contract vulnerabilities are 

discussed.  Through a comprehensive exploration, readers will 

gain insights into why this particular elliptic curve was chosen 

for use in Bitcoin's cryptographic protocols, highlighting its role 

in ensuring the robustness and integrity of the blockchain 

ecosystem. 

Keywords: Elliptic Curves, Brute Force Attack, Twist Attack, 
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I. INTRODUCTION 

The Bitcoin blockchain is a decentralized digital ledger 

that records all transactions made with Bitcoin 

cryptocurrency[1]. Each transaction is verified by a network 

of computers (nodes) through a process called mining, 

where transactions are bundled into blocks and added to the 

chain in chronological order.  
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This immutable and transparent system ensures security, 

and consensus, and prevents double-spending without the 

need for a central authority. The security of the Bitcoin 

blockchain is fundamentally rooted in Elliptic Curve 

Cryptography (ECC). Specifically, Bitcoin uses ECC to 

generate public and private key pairs that facilitate secure 

transactions. When a user wants to send Bitcoin, their 

private key signs the transaction, and the recipient uses the 

sender's public key to verify its authenticity. This 

cryptographic mechanism ensures that only the owner of the 

private key can authorize transactions, maintaining the 

integrity and security of the decentralized ledger system. 

The hashing function employed in the Bitcoin blockchain is 

SHA-256 (Secure Hash Algorithm 256-bit). This 

cryptographic hash function takes an input of any size and 

produces a fixed-size 256-bit  output, ensuring that even a 

tiny change in the input produces a significantly different 

output. Each block in the Bitcoin blockchain contains a 

unique cryptographic hash, which includes the hash of the 

previous block. This chaining mechanism ensures the 

immutability of the blockchain; altering any transaction in a 

block would necessitate recalculating all subsequent blocks' 

hashes, making the system tamper-evident and enhancing its 

security.  The generic structure of the blockchain and the 

generic structure of a block are shown in Figure 1 and 

Figure 2.  

 

 

 

  

 

 

Figure 1:  The Generic Structure of a Blockchain 

 

 

 

 

 

 

 

                                                         

 

 

Figure 2: The Generic Structure of a Block 

The secp256k1 elliptic curve is a specific elliptic curve 

used in Bitcoin for cryptographic functions, particularly for 

generating public and private key pairs.  
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1. Generate Private Key (): 

   private key = Random256Bits () 

2. Generate Public Key (private_key): 

   public_key = secp256k1_base_point * private_key 

   return public_key 

3. Generate Bitcoin Address (public_key): 

   hash_1 = SHA-256(public_key) 

   hash_2 = RIPEMD-160(hash_1) 

   checksum = SHA-256(SHA-256(hash_2)) [:4] 

   address = Base58Check Encode (hash_2 + checksum) 

   return address 

Bitcoin addresses are derived from public keys, and the 

security of Bitcoin relies on the computational difficulty of 

solving certain mathematical problems related to this elliptic 

curve.  It is believed to be secure against certain types of 

attacks, including those based on the discrete logarithm 

problem. The secp256k1 curve was chosen, in part, for its 

efficiency in terms of both computation and storage. The 

key characteristics of the secp256k1 elliptic curve are 

described in the next section. 

A. Description of the Elliptic Curve 

The equation for secp256k1 is y2 = x3 + 7. The 

parameters for this are discussed in [2]. The curve operates 

over a finite field of prime order.  The field size is a prime 

number, specifically   2^ {256} - 2^ {32} - 2^9 - 2^8 - 2^7 - 

2^6 - 2^4 - 1 which equals the following number. 

115792089237316195423570985008687907853269984665

640564039457584007908834671663 

The base point or generator point, often denoted as G, is a 

specific point on the curve. The coordinates of G are pre-

defined and are part of the standard:  The generator point 

G=(x,y)  is given below:   

(550662630222773436695787188951685343262506034537

77594175500187360389116729240, 

326705100207588169780830851305070431844712733806

59243275938904335757337482424) 

The order of the generator point (G) is a prime number and 

denotes the number of points on the curve. 

n = 

115792089237316195423570985008687907852837564279

074904382605163141518161494337 

B. Method for Generating Private and Public Keys 

Generating private and public keys in the Bitcoin 

protocol typically involves using elliptic curve cryptography 

(specifically, the secp256k1 curve) to produce these keys.  

Step 1: Choose a Random Private Key: 

Start by generating a random 256-bit number. This 

number serves as your private key. This private key is a 

crucial piece of information that you must keep secret. 

Anyone who has access to this key can control the 

associated Bitcoins. 

Step 2: Generate the Public Key: 

Use elliptic curve multiplication to derive a public key 

from the private key. The secp256k1 curve equation y2 = x3 

+ 7 over the finite field is used for this purpose. Multiply the 

base point of the curve (known as the generator point) by the 

private key to get the corresponding public key. 

Step 3: Generate the Bitcoin Address: 

The Bitcoin address is derived from the public key but 

goes through a hashing and encoding process. The public 

key is first hashed using the SHA-256 algorithm and then 

RIPEMD-160. This results in a 160-bit hash. This hash is 

then encoded into a format called Base58Check, which 

produces the familiar Bitcoin address format you might 

recognize (starts with a '1' or '3' for mainnet addresses). 

The Pseudocode for generating the private and public 

keys is given in Figure 3.  A Python program that 

implements private and public key algorithms is given in 

Appendix A. The Python program in Appendix B generates 

the bitcoin addresses from the private key and public key 

using the python-bitcoin-lib library. 

Figure 3: Method for Generating Private and Public 

Keys in Bitcoin Blockchain 

II. SECURITY ATTACKS ON THE SECP256K1 

ELLIPTIC CURVE 

The secp256k1 elliptic curve is widely used in various 

cryptographic applications, most notably as the basis for 

Bitcoin's public key infrastructure. As such, it has been 

scrutinized extensively by researchers and cryptanalysts.  

The various attacks on the use secp256k1 curve include 

Brute force attacks, Quantum attacks, side-channel attacks, 

fault attacks, and flaws in the implementation.  The brute 

force attack involves solving the elliptic curve discrete 

logarithm problem (ECDLP). The security of elliptic curve 

cryptography (ECC) relies heavily on the computational 

difficulty of solving the ECDLP problem. Given current 

computational resources and techniques, brute-forcing a 

secp256k1 private key is computationally infeasible. The 

Quantum attack on the ECC-based Cryptographic systems 

by using algorithms like Shor's algorithm to solve the 

ECDLP in polynomial time. However, as of now, there's no 

known practical quantum algorithm that can break 

secp256k1. Nevertheless, the emergence of quantum 

computing remains a potential long-term threat to ECC 

systems. 

The side-channel attacks do not target the mathematical 

properties of the curve but exploit weaknesses in the 

implementation. Side-channel attacks include attacks that 

use timing information, power consumption, or 

electromagnetic leaks to gain information about secret keys. 

The Fault attacks involve intentionally introducing faults 

(errors) into cryptographic computations and observing the 

results to extract secret information. For secp256k1, 

researchers have studied fault attacks, and while they might 

introduce vulnerabilities in specific implementations, they 

don't break the fundamental security of the curve itself.   

Flaws may also exist in the software and hardware 

implementation of the Cryptographic systems. Poor 

implementations, random number generation issues, or other 

software bugs can inadvertently weaken security. However, 

as with any cryptographic system, continuous monitoring, 

research, and adherence to best practices are crucial to 

maintaining the security of the use of sec256k1 elliptic 

Curve. 
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A. Subgroup Attack and Twist Attack  

There is a subgroup attack on Elliptic Curves using 

which an attacker can obtain the private key thus breaking 

the cryptosystem.  Assume an elliptic curve has a subgroup 

H with a prime number of elements. This count is called the 

group's order. Alice wants insights into Bob's private key, b. 

She selects a point, P, from subgroup H and tells Bob it's her 

public key, asking for an encrypted message. Bob calculates 

Q = b*P as a shared secret, encrypting a message C for 

Alice. Knowing Q belongs to the H subgroup, Alice 

attempts to decrypt C using points like P, 2P, 3P, etc., until 

success at kP. Now, with Q = kP and Q = b*P, Alice deduces 

k = b mod q, with q being H's order. 

By using a specific curve point, Alice gains knowledge 

about Bob's private key. However, this attack doesn't apply 

to the elliptic curve secp256k1 due to its prime group 

element count, meaning no non-trivial subgroups exist 

according to Lagrange's Theorem. To modify the small 

subgroup attack, Alice selects a point from a curve variant, 

E2, with a different constant term than secp256k1's y^2 = 

x^3 + 7, like y^2 = x^3 + 2. This E2 curve possesses small 

subgroups. If Bob's elliptic curve multiplication ignores P's 

actual curve, his software computes on E2. Thus, Alice can 

execute the aforementioned small subgroup attack. This is 

called the Twist attack on the Elliptic Curve [3]. 

B. Weak Nonce Attack on ECDSA Signature 

Alice signs a message using the Elliptic Curve Digital 

Signature Algorithm (ECDSA). Alice starts with her private 

key, generating her public key through elliptic curve 

cryptography with the equation y2 = x3+7 Mod N. Using the 

generator point G, Alice derives her private key as G added 

to itself a random number of times. Her public key is 

derived from M times G. Alice signs a message with 

ECDSA using R and S values. Bob verifies the signed 

message using R, S, and Alice's public key. A particular type 

of attack called the Lenstra-Lenstra-Lovasz (LLL) method 

can be used on the signature to get the private key [4]. 

C. Other Attacks on the Elliptic Curve 

Several other attacks including fault attacks on the use of 

the elliptic curve secp256k1 have been discussed 

[5][17][18][6][7].  Comparison of the secp256k1 with other 

Curves like the Edwards curve has also been discussed [8]. 

To avoid backdoor attacks on the use of Elliptic Curves, the 

use of multiple Elliptic Curves has been suggested 

[9][20][21].  

III. VULNERABILITIES IN THE IMPLEMENTATION 

OF THE ELLIPTIC CURVE 

While secp256k1 is considered to be secure when used 

correctly, there are potential vulnerabilities or risks 

associated with its usage: 

1. Implementation Flaws: One of the primary concerns 

with cryptographic algorithms is not necessarily the 

algorithm itself but how it's implemented. Poorly 

coded software libraries or hardware can introduce 

vulnerabilities, such as side-channel attacks where an 

attacker can gain information about the private key by 

monitoring physical aspects like power consumption or 

timing. 

2. Reused Addresses: While not a vulnerability in 

secp256k1 itself, reusing Bitcoin addresses can lead to 

privacy and security concerns. If an attacker manages 

to compromise a single private key associated with a 

reused address, they could potentially access all funds 

sent to that address. It's essential to generate a new 

address for each transaction to minimize such risks. 

3. Incorrect Key Management: Human errors can be a 

significant source of vulnerabilities. If individuals fail 

to securely manage their private keys, such as storing 

them on insecure devices, sharing them, or losing 

them, it can lead to unauthorized access and theft of 

Bitcoin funds. 

4. Weak Random Number Generation: Generating private 

keys requires a robust source of randomness. If the 

random number generator used to create private keys is 

flawed or predictable, it could lead to the generation of 

weak or easily guessable keys, making them 

susceptible to brute-force attacks. 

To mitigate these risks, developers, users, and 

organizations involved with Bitcoin and other blockchain 

technologies should follow best practices for cryptographic 

key management, regularly update their software and 

hardware, use well-reviewed and trusted libraries, and 

remain informed about potential advancements or threats in 

the field of cryptography[10][11][12][19][13][14]. 

IV. RANDOM NUMBER GENERATORS FOR THE 

GENERATION OF PRIVATE KEYS 

A random number generator is used to generate the 

private key in the Bitcoin Blockchain. Various methods for 

generating the random numbers are available including 

Cryptographically Secure Pseudorandom Number 

Generators (CSPRNGs), Operating System Provided 

Randomness, Hardware Random Number Generators, and 

Entropy Accumulation. Most systems rely on CSPRNGs to 

generate random numbers that are suitable for cryptographic 

operations. These generators produce sequences of numbers 

that appear random and unpredictable, making them suitable 

for generating private keys. In the context of Bitcoin and 

secp256k1, CSPRNGs are used to produce 256-bit numbers 

that serve as private keys. These numbers must be truly 

random to ensure the security of the associated Bitcoin 

addresses. Many Bitcoin wallet applications leverage the 

operating system's built-in mechanisms for randomness. For 

instance, operating systems like Linux provide /dev/random 

or /dev/random interfaces that offer random data. These 

sources are often considered to be sufficiently random for 

cryptographic purposes. Bitcoin software can tap into this 

randomness to generate private keys.   

For even higher security, some systems might use 

hardware-based random number generators. These devices 

generate random numbers based on physical processes, such 

as electronic noise or radioactive decay. Using HRNGs can 

reduce the reliance on software-based sources of 

randomness and provide an additional layer of security.  
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To ensure randomness, systems might accumulate 

entropy from various sources. This could include user 

interactions, system events, and other unpredictable factors. 

By combining entropy from multiple sources, systems can 

produce more robust random numbers suitable for private 

key generation. 

A. Attacks on the Bitcoin Blockchain Technology 

Over the years, the Bitcoin blockchain has faced various 

attacks and vulnerabilities [15]. Some of the major attacks 

and issues that have been observed are the 51% attack, the 

Sybil attack, Transaction Malleability, Denial-of-Service 

(DoS) attacks, fork attacks, Smart Contract vulnerabilities, 

and Mining Centralization attacks. 

The 51% attack is one of the most discussed potential 

threats to the Bitcoin network. If a single entity or a group of 

entities controls more than 50% of the network's mining 

power, they can potentially alter transaction histories, 

double-spend coins, or even halt transactions. However, 

executing a 51% attack on Bitcoin has become increasingly 

difficult due to its large and distributed mining network. In a 

Sybil attack, an attacker tries to control a significant portion 

of the network nodes to influence the network's behavior. 

This can be used to spread false information or disrupt the 

network. Bitcoin's proof-of-work consensus mechanism 

makes it challenging for a single entity to control a majority 

of nodes, reducing the risk of such attacks. 

Transaction Malleability: is a vulnerability that allows an 

attacker to change the transaction ID before it is confirmed 

on the blockchain. While it doesn't allow theft of funds 

directly, it can confuse transaction monitoring systems and 

lead to potential issues for services relying on unconfirmed 

transaction IDs.  The Denial-of-Service (DoS) attacks can 

target the Bitcoin network, aiming to flood nodes with 

unnecessary or malicious data, thereby disrupting the 

network's functionality. These attacks can slow down 

transaction processing times and cause inconvenience to 

users. 

A fork in the blockchain can occur due to software bugs 

or intentional actions by miners. While not necessarily 

malicious, unintentional forks can create confusion and 

disrupt consensus. Deliberate forks can be more 

problematic, as they can lead to a split in the community and 

the creation of new competing chains (like Bitcoin Cash or 

Bitcoin SV). While Bitcoin's scripting language is limited 

compared to other blockchains like Ethereum [16], there 

have been instances where vulnerabilities in smart contracts 

or custom scripts have been exploited, leading to loss of 

funds or disruptions.  Although Mining Centralization is not 

a direct attack, the increasing centralization of mining power 

in specific regions or by specific entities can pose a risk to 

the network's decentralization and security. Centralized 

mining pools have a significant influence over transaction 

processing and network upgrades.    Despite these potential 

vulnerabilities and attacks, Bitcoin has proven resilient over 

the years, largely due to its robust network of nodes, miners, 

developers, and community participants. Continuous 

research, development, and vigilance are essential to 

mitigate risks and maintain the network's integrity.  

 

 

V. CONCLUSIONS 

This research focussed on the security of the usage of the 

Elliptic Curve used in the Bitcoin Blockchain.  With the 

prevention of brute force attacks, twist attacks, fault attacks, 

and side-channel attacks on the implementation of the 

secp256k1 elliptic curve, the robustness and integrity of the 

Bitcoin Blockchain can be improved.  This research article 

discussed the vulnerabilities that may arise in the software 

implementation of the Bitcoin Elliptic Curve and methods to 

improve the security of the Bitcoin Blockchain by 

preventing these vulnerabilities from affecting Bitcoin 

transactions. 

Appendix A 

A Python Program to generate private and public keys using 

the secp256k1 curve in the Bitcoin blockchain. 

pip install ecdsa 

import ecdsa 

from ecdsa import SigningKey, SECP256k1 

# Curve parameters 

p = int 

("FFFFFFFF00000001000000000000000000000000FFFFF

FFFFFFFFFFFFFFFFFFF", 16) 

a = -3 

b = int 

("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0C

C53B0F63BCE3C3E27D2604B", 16) 

# Generator point (base point) 

G_x = int 

("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2

DCE28D959F2815B16F81798", 16) 

G_y = 

int("483ADA7726A3C4655DA4FBFC0E1108A8FD17B44

8A68554199C47D08FFB10D4B8", 16) 

G = ecdsa.ellipticcurve.Point(SECP256k1.curve, G_x, G_y, 

1) 

# Order of the subgroup generated by G 

n = int 

("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA

7179E84F3B9CAC2FC632551", 16) 

# Create a key pair 

private_key = SigningKey.generate(curve=SECP256k1) 

public_key = private_key.get_verifying_key() 

Output:  

Private Key: 

cfe55b43b13aa4dfeb620e40e49a7d33ff35a162b948093b87a

3ae8e9c48cf11 

Public Key:  

8d0219bb17ad3a1d6f2dda7a3afce035c35aa2aae5ed85f53f0

913aaea0a9a7d6f33d9f4cfa0eab9036d47b767eb2fd4a23809

e8021f9a976a882bba5b248346 

Signature: 

30ce478f29ccccb0669cb1b0957fff719fb5bc8582a859aa62f

39c23cb2115fccabf19f7bc8088ed37f334467bad668ffb015f

8b1b4988d952b66653c575f13d 

Verification Result: True 
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Appendix B 

A Python program to generate Bitcoin addresses using 

public and private keys. 
pip install python-bitcoinlib 

import os 

from bitcoin.wallet import CBitcoinSecret, P2PKHBitcoinAddress 

# Generate a random private key (you can also use your private 

key) 

private_key = CBitcoinSecret.from_secret_bytes(os.urandom(32)) 

# Derive the public key from the private key 

public_key = private_key.pub 

# Create a Bitcoin address from the public key 

address = P2PKHBitcoinAddress.from_pubkey(public_key) 

# Print the generated address and private key 

print("Bitcoin Address:", address) 

print("Private Key:", private_key) 

output:  

 Bitcoin Address: 1BSZ7Jns6yfMKub6Vi3SBnAYvVz9yV2VkH 

Private Key: 

L4jshZFxYiEPg6TgxrJ6ZkZeXZbZTC7YXA25ggmomkhHPvnAi

qZF 
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